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Ordering of viscous liquid mixtures under a steady shear flow
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~Received 10 May 1999!

Through extensive numerical simulations, we study phase separation in quenched viscous liquid mixtures
under an external shear flow. Formation of a layered structure in steady state normal to the shear direction is
shown to develop in the strong shear limit. The characteristic width of the layered domains follows a power
law as a function of the shear rate, with a power-law exponent in agreement with experimental results.
Shear-induced rheological behavior of the mixture is also examined in terms of the excess viscosity. Observed
power-law behavior of the maximum excess viscosity, which occurs at an intermediate time, agrees quite well
with theoretical scaling predictions.

PACS number~s!: 64.60.Cn, 61.41.1e, 64.60.My, 64.75.1g
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Despite extensive recent effort@1#, ordering of quenched
liquid mixtures under a shear flow is not fully understo
yet. When spinodal decomposition of a liquid mixture tak
place in the presence of an externally applied shear flow
strikingly elongated domain structure and peculiar rheolo
cal effects can result. These phenomena have recently
observed in experiments with various viscous liquid mixtu
@2,3# such as low molecular weight polymer blends a
pseudobinary mixtures of two different polymers in a co
mon solvent. Linear stability analysis@4# suggests that shea
flow indeed stabilizes such cylindrical domains against v
ous instabilities. The formation of highly anisotropic d
mains has also been explained@3# as a repeated breakup o
spherical droplets in a strong shear flow. There is, howe
no theoretical explanation for the observed power-law
havior @2# shown by the thickness of these layered doma
as a function of the shear flow rate. Shear-induced rheol
cal behavior of phase separating liquid mixtures is also
triguing. The breakup of domains elongated by shear lead
an excess viscosityDh. This quantity shows a maximum a
someintermediate time tm , and then relaxes to much small
values at late times. (Dh)max scales with shear rate as we
but the situation is not clear as different theoretical calcu
tions @5,6# and experimental measurements@7# for the
power-law exponent do not seem to agree with each oth

In this Rapid Communication, we address both these
sues of shear-induced morphology of phase separated
mains and the rheological behavior of the liquid mixture
carrying out a detailed simulation of domain growth in tw
dimensions. The model considered by us incorporates hy
dynamic interactions and an externally applied steady sh
flow. Many previous simulations@5# typically did not include
any hydrodynamic interactions in the model calculations.
limited cases, where hydrodynamics was included~in a
coarse-grained model@8# or in a molecular dynamics simu
lation @9#!, the simulations were not carried out to late time
As a result, layered domains were not observed in th
simulations. In the present study, we not only observe
extreme anisotropic phase but also characterize it by com
ing the domain size in steady state for many differe
strengths of the shear flow rate. The scaling of the dom
size with the shear flow rate found in our simulations is
good agreement with experimental observations. In addit
PRE 611063-651X/2000/61~3!/2200~4!/$15.00
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scaling of the excess viscosity as a function of the shear fl
rate found in simulations agrees quite well with scaling p
dictions.

We start from a model-H formulation@10# of a quenched
liquid mixture described by a Landau-Ginzburg type fre
energy functionalF. In this formulation the order paramete
f and the velocity fieldu satisfy the following set of equa
tions:

]f

]t
1u•“f5M•¹2

dF

df
1z, ~1!

rS ]u

]t
1u•“uD5h¹2u2f“

dF

Df
2“P1u, ~2!

along with the incompressibility condition,“•u50. Here,
Eq. ~1! is a modified Cahn-Hilliard equation and Eq.~2! is a
modified Navier-Stokes equation.z and u are the thermal
noise terms. Since the fluid is highly viscous, the inert
terms in the Navier-Stokes equation can be neglected. Un
such an overdamped relaxation approximation, and a suit
rescaling of the order-parameter, the velocity field, and sp
and time, the governing equations can be rewritten as

]f

]t
1u•“f5¹2~2f1f32¹2f!1j, ~3!

¹2u5Cf“~2f1f32¹2f!1“P1u, ~4!

along with the usual incompressibility condition. HereC is a
constant which is inversely proportional to the viscosityh. In
the presence of an externally applied steady shear flow in
x̂ direction, the velocity field can be written as

u~r !5ġyx̂1v~r !, ~5!

whereġ is the shear rate andv(r ) is the fluctuation part of
the velocity field.

Numerical solutions of the above set of equations is co
putationally demanding, particularly when one needs sta
tically accurate data for several values of the shear rate.
this reason, our simulations have been restricted to a t
dimensional grid of sizes 1283128 and 2563256 and the
R2200 ©2000 The American Physical Society
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thermal noise terms are not included in the integration. T
absence of thermal noise would limit our conclusions to
deep quench case. The order parameter equation is integ
by a straightforward Euler method, while the velocity equ
tions are integrated by using a fast Fourier transform met
@11,12#. The sheared boundary condition associated with
original equation is converted to an ordinary periodic bou
ary condition by the following moving lattice transformatio

x85x2ġty, y85y. ~6!

The resulting equations after such a transformation bec
stiff differential equations and numerical instability becom
a serious problem at late times. A remeshing procedure@13#
is employed to resolve this problem. The remeshing pro
dure utilizes the ordinary periodic boundary condition in t
flow direction to move data from the skewed lattice poin
onto a regular square lattice system. After remeshing,
grid progresses from its initial orthogonal position and ev
tually becomes skewed again when remeshing becomes
essary again@14#. For our square system (L3L), remeshing
is done at every integer value ofġt. After this remeshing the
integration remains stable in effect for all times when a sm
enough time-step (Dt50.01) is used.

We consider a critical quench case and compute the
correlation function in both thex and y directions. The do-
main size along thex andy directions are computed from th
respective pair-correlation functions as the location of
first zero crossing. We have also computed the normali
excess shear viscosity which represents the viscoelastic p
erties of the mixture. This quantity is related to the o
diagonal average excess shear stress and can be compu

Dh52
C

ġ K ]f

]x

]f

]y L . ~7!

All of these quantities are averaged over at least 20 rea
tions of the initial condition.

In Figs. 1 and 2 we display typical snapshots@15# of the
concentration profile of the system at various times after
quench for two different values of the~rescaled! shear rate
ġ50.02 and 0.05. For early times~i.e., for ġt<1!, the phase
separated domains are isotropic, as the shear effects ar
to perturb their shape. Subsequently, the domains bec
elongated under the influence of the shear flow. The rup
and recombination of domains become most prominen
intermediate times (ġt*1) and this leads to a maximum i
the excess shear viscosity around this time. Finally, at v
late times (ġt@1) lamellaelike domains form with a norma
along the shear gradient (ŷ) direction. The final shape of th
domains does not change any further and the system rea
a steady state. Note that the thickness of the lamellae (Ry) at
the steady state is much smaller for the larger shear rate

In order to test a possible scaling relation between
domain sizeRy and the shear rateġ, we have carried out the
simulation for a large number of shear rates. We observe
as long as the shear rate is larger than a critical valueġc
'0.001), lamellaelike structures form in the steady state
Fig. 3 we show a log-log plot ofRy versusġ. The data@16#
for all these shear rates fall on a straight line indicating t

Ry;ġ2n, ~8!
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with the exponentn50.3560.03, in excellent agreemen
with the experimental observations of Hashimotoet al. @2#
To obtain further insight into this scaling law, weturned off
hydrodynamic interactions and conducted a simulation
solving only the order parameter equation in the presenc
a steady shear flow. A similar scaling law is found in th
case as well@17# but the exponentn in the absence of hy-
drodynamics is smaller,n50.2260.03.

A detailed understanding of this scaling law needs a co

FIG. 1. Typical snapshots of the concentration profile for a sh
rate of ġ50.02. At early times, domains are isotropic. Subs
quently, domains become elongated along the flow direction.
late times, lamellar layers normal to the shear flow direction
formed.

FIG. 2. Same as in Fig. 1 exceptġ50.05 here. Note that the
time scales for the formation of anisotropic domains are differen
this case. Moreover, the width of the lamellar domains formed
very late times are smaller in this case when compared to Fig.
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FIG. 3. Log-log plot for the domain sizeRy in
the steady state vs the shear rateġ in the presence
of hydrodynamics for the critical quench case.
typical error bar is shown for guidance. The slop
of the straight line is20.35.
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plete treatment of the shear-induced pattern formation th
not yet available in the literature. However, the followin
argument, based on a mode-coupling theory by Kawas
@18#, will help shed some light onto the phenomenon. T
main new feature of domain growth in the presence o
shear flow is the suppression of the domain fluctuation. T
flow field tends to stretch the domains and in the proc
enlarges the interfacial area, while the interfacial tens
tends to minimize it. Since the system eventually reache
steady state controlled by a balance between the exte
shear and the intrinsic thermodynamic mechanism, it is r
sonable to assume that the relaxation rate of the conce
tion fluctuationGqc should be balanced by the external she
rateġ asGqc[G(qc);ġ. Modes with wave numbers bigge
thanqc will have faster relaxation rates, and in conseque
will disappear quickly. A small value ofqc would then cor-
respond to a weak shear case, because not many wave
bers q,qc are affected by the shear. In contrary, a lar
value ofqc corresponds to a strong shear case as more m
are affected and suppressed by the shear. One can rela
magnitude ofqc to the inverse of some thermal fluctuatio
correlation lengthj. The relaxation rate of the order param
eter fluctuation can be divided into two parts@19,20#. G(q)
5Ghydro(q)1G inter(q), where Ghydro(q) is associated with
the hydrodynamic interactions and has the following form
is

ki
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Ghydro~q!5
kT

6pnj3 H ~qj!2 for qj,1

3p

8
~qj!3 for qj.1

. ~9!

G inter(q) originates from the contribution of the interface di
fusion, and is given byG inter(q);q2(11q2j2). For strong
shear cases, this yieldsG inter(q);q4j2. Of special interest in
this paper is the strong shear limitqj.1 where, at a late
time regime, the typical sizeRy is associated withqc

21 rather
thanj ~j now will be a small constant representing the wid
of the interfacial thickness!. So, if hydrodynamic effects
dominate,

Ry;qc
21;ġ21/3, ~10!

in excellent agreement with experimental measurements
the absence of hydrodynamic interactions, interfacial dif
sion remains the only mechanism to balance shear effe
Consequently, in the strong shear case,

Ry;qc
21;ġ21/4. ~11!

Although the above scaling arguments are limited to thr
dimensional systems, the values of the exponentn, both in
the presence and absence of hydrodynamics, are in g
s

he
FIG. 4. Log-log plot for the maximum exces
viscosity (Dh)max vs the shear rateġ. A typical
error bar is shown for guidance. The slope of t
straight line is20.65.
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agreement with our simulation results for two-dimensio
systems. Similar striped structures under strong shear an
same scaling law for the domain size have also been
served in a recent molecular dynamics simulation in t
dimensions@21#. Simulations thus suggest that these exp
nents are similar for both two- and three-dimensional s
tems.

Next we turn to the scaling of the excess viscosityDh as
a function of the shear rate. After the system is quenc
below the critical point, the excess viscosity increases w
time, reaches a maximum value at some intermediate t
and finally decreases gradually to the steady state value.
location of the peak inDh corresponds toġtm'3.5, in agree-
ment with previous simulations and experiments@5–8#. Ob-
servation of the concentration profile clearly indicates t
the time tm of the peak position inDh corresponds to the
interfacial energy release due to the bursting and coales
of elongated domains. The maximum excess visco
(Dh)max is expected to scale with the shear rate as

~Dh!max;ġ2n. ~12!

Scaling arguments@5# suggest thatn5 2
3 , while a recent the-

oretical calculation@6# in the large-N limit for the order-
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parameter components and in the absence of hydrodyna
yields n5 1

2 . Our results for the excess viscosity are sho
in Fig. 4 as a log-log plot. Although there is some scatter
the data even after averaging over a large number of ru
our results are certainly consistent with the scaling resul
n5 2

3 , but not with the large-N result.
In conclusion, we have carried out a detailed simulat

of phase separation in a highly viscous liquid mixture driv
by an external steady shear flow. The formation of a laye
structure in steady state normal to the shear direction
clearly demonstrated in the simulation in the strong sh
limit. The characteristic width of the layered domains fo
lows a power law as a function of the shear rate, in agr
ment with experimental results. The excess viscosity a
shows a power-law behavior in agreement with scaling p
dictions.
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