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Ordering of viscous liquid mixtures under a steady shear flow
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Through extensive numerical simulations, we study phase separation in quenched viscous liquid mixtures
under an external shear flow. Formation of a layered structure in steady state normal to the shear direction is
shown to develop in the strong shear limit. The characteristic width of the layered domains follows a power
law as a function of the shear rate, with a power-law exponent in agreement with experimental results.
Shear-induced rheological behavior of the mixture is also examined in terms of the excess viscosity. Observed
power-law behavior of the maximum excess viscosity, which occurs at an intermediate time, agrees quite well
with theoretical scaling predictions.
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Despite extensive recent effdrt], ordering of quenched scaling of the excess viscosity as a function of the shear flow
liguid mixtures under a shear flow is not fully understoodrate found in simulations agrees quite well with scaling pre-
yet. When spinodal decomposition of a liquid mixture takesdictions.
place in the presence of an externally applied shear flow, a We start from a modeH formulation[10] of a quenched
strikingly elongated domain structure and peculiar rheologiliquid mixture described by a Landau-Ginzburg type free-
cal effects can result. These phenomena have recently be€fergy functionaF. In this formulation the order parameter
observed in experiments with various viscous liquid mixtures¢ and the velocity fields satisfy the following set of equa-
[2,3] such as low molecular weight polymer blends andtions:
pseudobinary mixtures of two different polymers in a com-

mon lsolvent. Lingar stability analy_sﬁs] suggests tha; shear. @-I-U'V(l): M .szJrg, )
flow indeed stabilizes such cylindrical domains against vari- at o¢

ous instabilities. The formation of highly anisotropic do-

mains has also been explaing&] as a repeated breakup of au 5 oF

spherical droplets in a strong shear flow. There is, however, p| p tu-Vul=nVu-¢Vv E_VPJF 0, @)

no theoretical explanation for the observed power-law be-

havior[2] shown by the thickness of these layered domainslong with the incompressibility conditior¥ -u=0. Here,

as a function of the shear flow rate. Shear-induced rheologiEq. (1) is a modified Cahn-Hilliard equation and E@) is a

cal behavior of phase separating liquid mixtures is also inmodified Navier-Stokes equatiod.and # are the thermal
triguing. The breakup of domains elongated by shear leads taoise terms. Since the fluid is highly viscous, the inertial
an excess viscosity#. This quantity shows a maximum at terms in the Navier-Stokes equation can be neglected. Under
someintermediate time4, and then relaxes to much smaller such an overdamped relaxation approximation, and a suitable
values at late times.A7) max SCales with shear rate as well, rescaling of the order-parameter, the velocity field, and space
but the situation is not clear as different theoretical calculaand time, the governing equations can be rewritten as

tions [5,6] and experimental measurementg] for the

power-law exponent do not seem to agree with each other. do R 3 oo

In this Rapid Communication, we address both these is- EJFU'Vd’_V (—¢+¢"=V7g)+¢, &)
sues of shear-induced morphology of phase separated do-
mains and the rheological behavior of the liquid mixture by V2U=CV(— ¢+ ¢3—V25)+ VP +6, (4

carrying out a detailed simulation of domain growth in two

dimensions. The model considered by us incorporates hydrgrong with the usual incompressibility condition. HeZés a
dynamic interactions and an externally applied steady sheajonstant which is inversely proportional to the viscosjtyn

flow. Many previous simulations] typically did notinclude  the presence of an externally applied steady shear flow in the
any hydrodynamic interactions in the model calculations. Ing direction, the velocity field can be written as

limited cases, where hydrodynamics was includ@ud a

coarse-grained mod@8] or in a molecular dynamics simu- u(r)=yyX+v(r), (5)
lation[9]), the simulations were not carried out to late times.

As a result, layered domains were not observed in theseherey is the shear rate ang(r) is the fluctuation part of
simulations. In the present study, we not only observe thishe velocity field.

extreme anisotropic phase but also characterize it by comput- Numerical solutions of the above set of equations is com-
ing the domain size in steady state for many differentputationally demanding, particularly when one needs statis-
strengths of the shear flow rate. The scaling of the domaitically accurate data for several values of the shear rate. For
size with the shear flow rate found in our simulations is inthis reason, our simulations have been restricted to a two-
good agreement with experimental observations. In additiondimensional grid of sizes 128128 and 25& 256 and the
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thermal noise terms are not included in the integration. The
absence of thermal noise would limit our conclusions to a
deep quench case. The order parameter equation is integrated
by a straightforward Euler method, while the velocity equa-
tions are integrated by using a fast Fourier transform method
[11,12. The sheared boundary condition associated with the
original equation is converted to an ordinary periodic bound-
ary condition by the following moving lattice transformation:

X'=x—yty, y'=y. (6)

The resulting equations after such a transformation become
stiff differential equations and numerical instability becomes
a serious problem at late times. A remeshing procefil@g

is employed to resolve this problem. The remeshing proce-
dure utilizes the ordinary periodic boundary condition in the
flow direction to move data from the skewed lattice points
onto a regular square lattice system. After remeshing, the s —

grid progresses from its initial orthogonal position and even- M

tually becomes skewed again when remeshing becomes nec- '

essary agaifl4]. For our square systenb. K L), remeshing =500 (=2300
IS done.at every .|nteger va_lue of. After th|§ remeshing the FIG. 1. Typical snapshots of the concentration profile for a shear
integration remains stable in effect for all times when a smal| e of 4=0.02. At early times, domains are isotropic. Subse-
enough time-stepAt=0.01) is used. guently, domains become elongated along the flow direction. At

We consider a critical quench case and compute the pajte times, lamellar layers normal to the shear flow direction is
correlation function in both th& andy directions. The do- formed.

main size along th& andy directions are computed from the
respective pair-correlation functions as the location of theyith the exponentn=0.35+0.03, in excellent agreement
first zero crossing. We have also computed the normalizediith the experimental observations of Hashimetoal. [2]
excess shear viscosity which represents the viscoelastic profo obtain further insight into this scaling law, vierned off
erties of the mixture. This quantity is related to the off- hydrodynamic interactions and conducted a simulation by
diagonal average excess shear stress and can be computed@lsing only the order parameter equation in the presence of
a steady shear flow. A similar scaling law is found in this
n=— S<ﬁ @> @) case as wel[17] but the exponenn in the absence of hy-
Y\ IX dy drodynamics is smallen=0.22+0.03.
A detailed understanding of this scaling law needs a com-

All of these quantities are averaged over at least 20 realiza-
tions of the initial condition.

In Figs. 1 and 2 we display typical snapshft$] of the
concentration profile of the system at various times after the
quench for two different values of theescaledl shear rate
y=0.02 and 0.05. For early timése., for yt<1), the phase ‘
separated domains are isotropic, as the shear effects are yet ¥
to perturb their shape. Subsequently, the domains become
elongated under the influence of the shear flow. The rupture
and recombination of domains become most prominent at
intermediate times¥t=1) and this leads to a maximum in
the excess shear viscosity around this time. Finally, at very
late times ¢t>1) lamellaelike domains form with a normal
along the shear gradieng) direction. The final shape of the
domains does not change any further and the system reaches &
a steady state. Note that the thickness of the lameRg &t .
the steady state is much smaller for the larger shear rate.

In order to test a possible scaling relation between the
domain sizeR, and the shear ratg, we have carried out the
simulation for a large number of shear rates. We observe that

as long as the shear rate is larger than a critical valye ( =300 2920
~0.001), lamellaelike structures form in the steady state. In
Fig. 3 we show a log-log plot dR, versusy. The datd 16] FIG. 2. Same as in Fig. 1 except=0.05 here. Note that the

for all these shear rates fall on a straight line indicating thatime scales for the formation of anisotropic domains are different in
this case. Moreover, the width of the lamellar domains formed at
Ry~y", (8) very late times are smaller in this case when compared to Fig. 1.
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plete treatment of the shear-induced pattern formation that is (qé)? for qé<1
not yet available in the literature. However, the following I kT 3 9
argument, based on a mode-coupling theory by Kawasaki hydrd @) = 6mnés %(qg)s for gé>1 ©)

[18], will help shed some light onto the phenomenon. The

main new feature of domain growth in the presence of - I . .
g b aiimer(q) originates from the contribution of the interface dif-

usion, and is given by'ine{)~q*(1+q*¢?). For strong
hear cases, this yield(q) ~q*&2. Of special interest in

shear flow is the suppression of the domain fluctuation. Th
flow field tends to stretch the domains and in the proces
enlarges the interfacial area, while the interfacial tensiory | ) 2
tends to minimize it. Since the system eventually reaches 41IS Paper is the strong shear lingg> 1 whgre,_?t a late
steady state controlled by a balance between the externdme regime, the typical sizB, is associated withy; ~ rather
shear and the intrinsic thermodynamic mechanism, it is reahan¢ (& now will be a small constant representing the width
sonable to assume that the relaxation rate of the concentr&f the interfacial thicknegs So, if hydrodynamic effects
tion fluctuationl . should be balanced by the external sheadominate,
ratey asl'qc=I'(q.)~y. Modes with wave numbers bigger

thang, will have faster relaxation rates, and in consequence

will dlszéppear qu'ﬁkli’{ A small vslue . would then cor- i, excellent agreement with experimental measurements. In
respond to a weak shear case, because not many wave NUffa ahsence of hydrodynamic interactions, interfacial diffu-

bersq<q. are affected by the shear. In contrary, a largesjon remains the only mechanism to balance shear effects.
value ofq corresponds to a strong shear case as more mOd?fOnsequently in the strong shear case

are affected and suppressed by the shear. One can relate the

magnitude ofq. to the inverse of some thermal fluctuation Rquc—lw'y—l/“_ (12)
correlation lengthé. The relaxation rate of the order param-

eter fluctuation can be divided into two paft9,20. I'(q) Although the above scaling arguments are limited to three-
=T hyard @) + Tineedq), where I'ny4o(q) is associated with dimensional systems, the values of the expomeritoth in

the hydrodynamic interactions and has the following form: the presence and absence of hydrodynamics, are in good

Ry"’qc_l"’;)’_l/B, (10)
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agreement with our simulation results for two-dimensionalparameter components and in the absence of hydrodynamics
systems. Similar striped structures under strong shear and tlygelds »= 3. Our results for the excess viscosity are shown
same scaling law for the domain size have also been olin Fig. 4 as a log-log plot. Although there is some scatter in
served in a recent molecular dynamics simulation in twothe data even after averaging over a |arge number of runs,
dimensions{21]. Simulations thus suggest that these expo-our results are certainly consistent with the scaling result of
nents are similar for both two- and three-dimensional SYSy =2, put not with the largeN result.
tems. , _ , In conclusion, we have carried out a detailed simulation
Next we turn to the scaling of the excess viscosity as ot nhase separation in a highly viscous liquid mixture driven
a function of the shear rate. After the system is quenchegly ', o ternal steady shear flow. The formation of a layered
hstructure in steady state normal to the shear direction is

time, reaches a maximum value at some intermediate tlmec’learly demonstrated in the simulation in the strong shear

and finally decreases gradually to the steady state value. qu
location of the peak il corresponds tgt,,~ 3.5, in agree-

ment with previous simulations and experimeffis-8]. Ob-

servation of the concentration profile clearly indicates thaf"
the timet,, of the peak position imM\# corresponds to the

Imit. The characteristic width of the layered domains fol-

lows a power law as a function of the shear rate, in agree-
ent with experimental results. The excess viscosity also
shows a power-law behavior in agreement with scaling pre-

interfacial energy release due to the bursting and coalescirf§ctions:
of elongated domains. The maximum excess viscosity We thank Erik Hobbie, Rodney Fox, and Amalie Frisch-

(A7) max IS expected to scale with the shear rate as

(A max=y " (12

Scaling argument5] suggest thab=3, while a recent the-

oretical calculation[6] in the largeN limit for the order-

knecht for many useful discussions. This work has been sup-
ported by the Kansas Program for Complex Fluid Flow
(Contract No. NSF-EPSCoRand by the National Science
Foundation Grant No. CDA-9724289.
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